SVM Categorizer: A Generic Categorization Tool Using Support Vector Machines
نویسندگان
چکیده
Supervised text categorisation is a significant tool considering the vast amount of structured, unstru ctured, or semi-structured texts that are available from internal or external enterprise resources. The goal of supervised text categorisation is to assign text documents to finite pre -specified categories in order to extract and automatically organise information coming from th ese resources. This paper proposes the implementation of a generic application – SVM Categorizer using the Support Vector Machines algorithm with an innovative statistical adjustment that improves its performance. The algorithm is able to learn from a pre-categorised document corpus and it is tested on another uncategorized one based on a business intelligence case study. This paper discusses the requirements, design and implementation and describes every aspect of the application that will be developed. The final output of the SVM Categorizer is evaluated using commonly accepted metrics so as to measure its performance and contrast it with other classification tools.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملNTC (Neural Text Categorizer): Neural Network for Text Categorization
This research proposes a new neural network for text categorization which uses alternative representations of documents to numerical vectors. Since the proposed neural network is intended originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research. Numerical vectors representing documents for tasks of text mining have inherently two main problems: huge d...
متن کامل